home *** CD-ROM | disk | FTP | other *** search
- /* specfunc/fermi_dirac.c
- *
- * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or (at
- * your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
-
- /* Author: G. Jungman */
-
- #include <config.h>
- #include <gsl/gsl_math.h>
- #include <gsl/gsl_errno.h>
- #include <gsl/gsl_sf_exp.h>
- #include <gsl/gsl_sf_gamma.h>
- #include <gsl/gsl_sf_hyperg.h>
- #include <gsl/gsl_sf_pow_int.h>
- #include <gsl/gsl_sf_zeta.h>
- #include <gsl/gsl_sf_fermi_dirac.h>
-
- #include "error.h"
-
- #include "chebyshev.h"
- #include "cheb_eval.c"
-
- #define locEPS (1000.0*GSL_DBL_EPSILON)
-
-
- /* Chebyshev fit for F_{1}(t); -1 < t < 1, -1 < x < 1
- */
- static double fd_1_a_data[22] = {
- 1.8949340668482264365,
- 0.7237719066890052793,
- 0.1250000000000000000,
- 0.0101065196435973942,
- 0.0,
- -0.0000600615242174119,
- 0.0,
- 6.816528764623e-7,
- 0.0,
- -9.5895779195e-9,
- 0.0,
- 1.515104135e-10,
- 0.0,
- -2.5785616e-12,
- 0.0,
- 4.62270e-14,
- 0.0,
- -8.612e-16,
- 0.0,
- 1.65e-17,
- 0.0,
- -3.e-19
- };
- static cheb_series fd_1_a_cs = {
- fd_1_a_data,
- 21,
- -1, 1,
- 12
- };
-
-
- /* Chebyshev fit for F_{1}(3/2(t+1) + 1); -1 < t < 1, 1 < x < 4
- */
- static double fd_1_b_data[22] = {
- 10.409136795234611872,
- 3.899445098225161947,
- 0.513510935510521222,
- 0.010618736770218426,
- -0.001584468020659694,
- 0.000146139297161640,
- -1.408095734499e-6,
- -2.177993899484e-6,
- 3.91423660640e-7,
- -2.3860262660e-8,
- -4.138309573e-9,
- 1.283965236e-9,
- -1.39695990e-10,
- -4.907743e-12,
- 4.399878e-12,
- -7.17291e-13,
- 2.4320e-14,
- 1.4230e-14,
- -3.446e-15,
- 2.93e-16,
- 3.7e-17,
- -1.6e-17
- };
- static cheb_series fd_1_b_cs = {
- fd_1_b_data,
- 21,
- -1, 1,
- 11
- };
-
-
- /* Chebyshev fit for F_{1}(3(t+1) + 4); -1 < t < 1, 4 < x < 10
- */
- static double fd_1_c_data[23] = {
- 56.78099449124299762,
- 21.00718468237668011,
- 2.24592457063193457,
- 0.00173793640425994,
- -0.00058716468739423,
- 0.00016306958492437,
- -0.00003817425583020,
- 7.64527252009e-6,
- -1.31348500162e-6,
- 1.9000646056e-7,
- -2.141328223e-8,
- 1.23906372e-9,
- 2.1848049e-10,
- -1.0134282e-10,
- 2.484728e-11,
- -4.73067e-12,
- 7.3555e-13,
- -8.740e-14,
- 4.85e-15,
- 1.23e-15,
- -5.6e-16,
- 1.4e-16,
- -3.e-17
- };
- static cheb_series fd_1_c_cs = {
- fd_1_c_data,
- 22,
- -1, 1,
- 13
- };
-
-
- /* Chebyshev fit for F_{1}(x) / x^2
- * 10 < x < 30
- * -1 < t < 1
- * t = 1/10 (x-10) - 1 = x/10 - 2
- * x = 10(t+2)
- */
- static double fd_1_d_data[30] = {
- 1.0126626021151374442,
- -0.0063312525536433793,
- 0.0024837319237084326,
- -0.0008764333697726109,
- 0.0002913344438921266,
- -0.0000931877907705692,
- 0.0000290151342040275,
- -8.8548707259955e-6,
- 2.6603474114517e-6,
- -7.891415690452e-7,
- 2.315730237195e-7,
- -6.73179452963e-8,
- 1.94048035606e-8,
- -5.5507129189e-9,
- 1.5766090896e-9,
- -4.449310875e-10,
- 1.248292745e-10,
- -3.48392894e-11,
- 9.6791550e-12,
- -2.6786240e-12,
- 7.388852e-13,
- -2.032828e-13,
- 5.58115e-14,
- -1.52987e-14,
- 4.1886e-15,
- -1.1458e-15,
- 3.132e-16,
- -8.56e-17,
- 2.33e-17,
- -5.9e-18
- };
- static cheb_series fd_1_d_cs = {
- fd_1_d_data,
- 29,
- -1, 1,
- 14
- };
-
-
- /* Chebyshev fit for F_{1}(x) / x^2
- * 30 < x < Inf
- * -1 < t < 1
- * t = 60/x - 1
- * x = 60/(t+1)
- */
- static double fd_1_e_data[10] = {
- 1.0013707783890401683,
- 0.0009138522593601060,
- 0.0002284630648400133,
- -1.57e-17,
- -1.27e-17,
- -9.7e-18,
- -6.9e-18,
- -4.6e-18,
- -2.9e-18,
- -1.7e-18
- };
- static cheb_series fd_1_e_cs = {
- fd_1_e_data,
- 9,
- -1, 1,
- 4
- };
-
-
- /* Chebyshev fit for F_{2}(t); -1 < t < 1, -1 < x < 1
- */
- static double fd_2_a_data[21] = {
- 2.1573661917148458336,
- 0.8849670334241132182,
- 0.1784163467613519713,
- 0.0208333333333333333,
- 0.0012708226459768508,
- 0.0,
- -5.0619314244895e-6,
- 0.0,
- 4.32026533989e-8,
- 0.0,
- -4.870544166e-10,
- 0.0,
- 6.4203740e-12,
- 0.0,
- -9.37424e-14,
- 0.0,
- 1.4715e-15,
- 0.0,
- -2.44e-17,
- 0.0,
- 4.e-19
- };
- static cheb_series fd_2_a_cs = {
- fd_2_a_data,
- 20,
- -1, 1,
- 12
- };
-
-
- /* Chebyshev fit for F_{2}(3/2(t+1) + 1); -1 < t < 1, 1 < x < 4
- */
- static double fd_2_b_data[22] = {
- 16.508258811798623599,
- 7.421719394793067988,
- 1.458309885545603821,
- 0.128773850882795229,
- 0.001963612026198147,
- -0.000237458988738779,
- 0.000018539661382641,
- -1.92805649479e-7,
- -2.01950028452e-7,
- 3.2963497518e-8,
- -1.885817092e-9,
- -2.72632744e-10,
- 8.0554561e-11,
- -8.313223e-12,
- -2.24489e-13,
- 2.18778e-13,
- -3.4290e-14,
- 1.225e-15,
- 5.81e-16,
- -1.37e-16,
- 1.2e-17,
- 1.e-18
- };
- static cheb_series fd_2_b_cs = {
- fd_2_b_data,
- 21,
- -1, 1,
- 12
- };
-
-
- /* Chebyshev fit for F_{1}(3(t+1) + 4); -1 < t < 1, 4 < x < 10
- */
- static double fd_2_c_data[20] = {
- 168.87129776686440711,
- 81.80260488091659458,
- 15.75408505947931513,
- 1.12325586765966440,
- 0.00059057505725084,
- -0.00016469712946921,
- 0.00003885607810107,
- -7.89873660613e-6,
- 1.39786238616e-6,
- -2.1534528656e-7,
- 2.831510953e-8,
- -2.94978583e-9,
- 1.6755082e-10,
- 2.234229e-11,
- -1.035130e-11,
- 2.41117e-12,
- -4.3531e-13,
- 6.447e-14,
- -7.39e-15,
- 4.3e-16
- };
- static cheb_series fd_2_c_cs = {
- fd_2_c_data,
- 19,
- -1, 1,
- 12
- };
-
-
- /* Chebyshev fit for F_{1}(x) / x^3
- * 10 < x < 30
- * -1 < t < 1
- * t = 1/10 (x-10) - 1 = x/10 - 2
- * x = 10(t+2)
- */
- static double fd_2_d_data[30] = {
- 0.3459960518965277589,
- -0.00633136397691958024,
- 0.00248382959047594408,
- -0.00087651191884005114,
- 0.00029139255351719932,
- -0.00009322746111846199,
- 0.00002904021914564786,
- -8.86962264810663e-6,
- 2.66844972574613e-6,
- -7.9331564996004e-7,
- 2.3359868615516e-7,
- -6.824790880436e-8,
- 1.981036528154e-8,
- -5.71940426300e-9,
- 1.64379426579e-9,
- -4.7064937566e-10,
- 1.3432614122e-10,
- -3.823400534e-11,
- 1.085771994e-11,
- -3.07727465e-12,
- 8.7064848e-13,
- -2.4595431e-13,
- 6.938531e-14,
- -1.954939e-14,
- 5.50162e-15,
- -1.54657e-15,
- 4.3429e-16,
- -1.2178e-16,
- 3.394e-17,
- -8.81e-18
- };
- static cheb_series fd_2_d_cs = {
- fd_2_d_data,
- 29,
- -1, 1,
- 14
- };
-
-
- /* Chebyshev fit for F_{2}(x) / x^3
- * 30 < x < Inf
- * -1 < t < 1
- * t = 60/x - 1
- * x = 60/(t+1)
- */
- static double fd_2_e_data[4] = {
- 0.3347041117223735227,
- 0.00091385225936012645,
- 0.00022846306484003205,
- 5.2e-19
- };
- static cheb_series fd_2_e_cs = {
- fd_2_e_data,
- 3,
- -1, 1,
- 3
- };
-
-
- /* Chebyshev fit for F_{-1/2}(t); -1 < t < 1, -1 < x < 1
- */
- static double fd_mhalf_a_data[20] = {
- 1.2663290042859741974,
- 0.3697876251911153071,
- 0.0278131011214405055,
- -0.0033332848565672007,
- -0.0004438108265412038,
- 0.0000616495177243839,
- 8.7589611449897e-6,
- -1.2622936986172e-6,
- -1.837464037221e-7,
- 2.69495091400e-8,
- 3.9760866257e-9,
- -5.894468795e-10,
- -8.77321638e-11,
- 1.31016571e-11,
- 1.9621619e-12,
- -2.945887e-13,
- -4.43234e-14,
- 6.6816e-15,
- 1.0084e-15,
- -1.561e-16
- };
- static cheb_series fd_mhalf_a_cs = {
- fd_mhalf_a_data,
- 19,
- -1, 1,
- 12
- };
-
-
- /* Chebyshev fit for F_{-1/2}(3/2(t+1) + 1); -1 < t < 1, 1 < x < 4
- */
- static double fd_mhalf_b_data[20] = {
- 3.270796131942071484,
- 0.5809004935853417887,
- -0.0299313438794694987,
- -0.0013287935412612198,
- 0.0009910221228704198,
- -0.0001690954939688554,
- 6.5955849946915e-6,
- 3.5953966033618e-6,
- -9.430672023181e-7,
- 8.75773958291e-8,
- 1.06247652607e-8,
- -4.9587006215e-9,
- 7.160432795e-10,
- 4.5072219e-12,
- -2.3695425e-11,
- 4.9122208e-12,
- -2.905277e-13,
- -9.59291e-14,
- 3.00028e-14,
- -3.4970e-15
- };
- static cheb_series fd_mhalf_b_cs = {
- fd_mhalf_b_data,
- 19,
- -1, 1,
- 12
- };
-
-
- /* Chebyshev fit for F_{-1/2}(3(t+1) + 4); -1 < t < 1, 4 < x < 10
- */
- static double fd_mhalf_c_data[25] = {
- 5.828283273430595507,
- 0.677521118293264655,
- -0.043946248736481554,
- 0.005825595781828244,
- -0.000864858907380668,
- 0.000110017890076539,
- -6.973305225404e-6,
- -1.716267414672e-6,
- 8.59811582041e-7,
- -2.33066786976e-7,
- 4.8503191159e-8,
- -8.130620247e-9,
- 1.021068250e-9,
- -5.3188423e-11,
- -1.9430559e-11,
- 8.750506e-12,
- -2.324897e-12,
- 4.83102e-13,
- -8.1207e-14,
- 1.0132e-14,
- -4.64e-16,
- -2.24e-16,
- 9.7e-17,
- -2.6e-17,
- 5.e-18
- };
- static cheb_series fd_mhalf_c_cs = {
- fd_mhalf_c_data,
- 24,
- -1, 1,
- 13
- };
-
-
- /* Chebyshev fit for F_{-1/2}(x) / x^(1/2)
- * 10 < x < 30
- * -1 < t < 1
- * t = 1/10 (x-10) - 1 = x/10 - 2
- */
- static double fd_mhalf_d_data[30] = {
- 2.2530744202862438709,
- 0.0018745152720114692,
- -0.0007550198497498903,
- 0.0002759818676644382,
- -0.0000959406283465913,
- 0.0000324056855537065,
- -0.0000107462396145761,
- 3.5126865219224e-6,
- -1.1313072730092e-6,
- 3.577454162766e-7,
- -1.104926666238e-7,
- 3.31304165692e-8,
- -9.5837381008e-9,
- 2.6575790141e-9,
- -7.015201447e-10,
- 1.747111336e-10,
- -4.04909605e-11,
- 8.5104999e-12,
- -1.5261885e-12,
- 1.876851e-13,
- 1.00574e-14,
- -1.82002e-14,
- 8.6634e-15,
- -3.2058e-15,
- 1.0572e-15,
- -3.259e-16,
- 9.60e-17,
- -2.74e-17,
- 7.6e-18,
- -1.9e-18
- };
- static cheb_series fd_mhalf_d_cs = {
- fd_mhalf_d_data,
- 29,
- -1, 1,
- 15
- };
-
-
- /* Chebyshev fit for F_{1/2}(t); -1 < t < 1, -1 < x < 1
- */
- static double fd_half_a_data[23] = {
- 1.7177138871306189157,
- 0.6192579515822668460,
- 0.0932802275119206269,
- 0.0047094853246636182,
- -0.0004243667967864481,
- -0.0000452569787686193,
- 5.2426509519168e-6,
- 6.387648249080e-7,
- -8.05777004848e-8,
- -1.04290272415e-8,
- 1.3769478010e-9,
- 1.847190359e-10,
- -2.51061890e-11,
- -3.4497818e-12,
- 4.784373e-13,
- 6.68828e-14,
- -9.4147e-15,
- -1.3333e-15,
- 1.898e-16,
- 2.72e-17,
- -3.9e-18,
- -6.e-19,
- 1.e-19
- };
- static cheb_series fd_half_a_cs = {
- fd_half_a_data,
- 22,
- -1, 1,
- 11
- };
-
-
- /* Chebyshev fit for F_{1/2}(3/2(t+1) + 1); -1 < t < 1, 1 < x < 4
- */
- static double fd_half_b_data[20] = {
- 7.651013792074984027,
- 2.475545606866155737,
- 0.218335982672476128,
- -0.007730591500584980,
- -0.000217443383867318,
- 0.000147663980681359,
- -0.000021586361321527,
- 8.07712735394e-7,
- 3.28858050706e-7,
- -7.9474330632e-8,
- 6.940207234e-9,
- 6.75594681e-10,
- -3.10200490e-10,
- 4.2677233e-11,
- -2.1696e-14,
- -1.170245e-12,
- 2.34757e-13,
- -1.4139e-14,
- -3.864e-15,
- 1.202e-15
- };
- static cheb_series fd_half_b_cs = {
- fd_half_b_data,
- 19,
- -1, 1,
- 12
- };
-
-
- /* Chebyshev fit for F_{1/2}(3(t+1) + 4); -1 < t < 1, 4 < x < 10
- */
- static double fd_half_c_data[23] = {
- 29.584339348839816528,
- 8.808344283250615592,
- 0.503771641883577308,
- -0.021540694914550443,
- 0.002143341709406890,
- -0.000257365680646579,
- 0.000027933539372803,
- -1.678525030167e-6,
- -2.78100117693e-7,
- 1.35218065147e-7,
- -3.3740425009e-8,
- 6.474834942e-9,
- -1.009678978e-9,
- 1.20057555e-10,
- -6.636314e-12,
- -1.710566e-12,
- 7.75069e-13,
- -1.97973e-13,
- 3.9414e-14,
- -6.374e-15,
- 7.77e-16,
- -4.0e-17,
- -1.4e-17
- };
- static cheb_series fd_half_c_cs = {
- fd_half_c_data,
- 22,
- -1, 1,
- 13
- };
-
-
- /* Chebyshev fit for F_{1/2}(x) / x^(3/2)
- * 10 < x < 30
- * -1 < t < 1
- * t = 1/10 (x-10) - 1 = x/10 - 2
- */
- static double fd_half_d_data[30] = {
- 1.5116909434145508537,
- -0.0036043405371630468,
- 0.0014207743256393359,
- -0.0005045399052400260,
- 0.0001690758006957347,
- -0.0000546305872688307,
- 0.0000172223228484571,
- -5.3352603788706e-6,
- 1.6315287543662e-6,
- -4.939021084898e-7,
- 1.482515450316e-7,
- -4.41552276226e-8,
- 1.30503160961e-8,
- -3.8262599802e-9,
- 1.1123226976e-9,
- -3.204765534e-10,
- 9.14870489e-11,
- -2.58778946e-11,
- 7.2550731e-12,
- -2.0172226e-12,
- 5.566891e-13,
- -1.526247e-13,
- 4.16121e-14,
- -1.12933e-14,
- 3.0537e-15,
- -8.234e-16,
- 2.215e-16,
- -5.95e-17,
- 1.59e-17,
- -4.0e-18
- };
- static cheb_series fd_half_d_cs = {
- fd_half_d_data,
- 29,
- -1, 1,
- 15
- };
-
-
-
- /* Chebyshev fit for F_{3/2}(t); -1 < t < 1, -1 < x < 1
- */
- static double fd_3half_a_data[20] = {
- 2.0404775940601704976,
- 0.8122168298093491444,
- 0.1536371165644008069,
- 0.0156174323847845125,
- 0.0005943427879290297,
- -0.0000429609447738365,
- -3.8246452994606e-6,
- 3.802306180287e-7,
- 4.05746157593e-8,
- -4.5530360159e-9,
- -5.306873139e-10,
- 6.37297268e-11,
- 7.8403674e-12,
- -9.840241e-13,
- -1.255952e-13,
- 1.62617e-14,
- 2.1318e-15,
- -2.825e-16,
- -3.78e-17,
- 5.1e-18
- };
- static cheb_series fd_3half_a_cs = {
- fd_3half_a_data,
- 19,
- -1, 1,
- 11
- };
-
-
- /* Chebyshev fit for F_{3/2}(3/2(t+1) + 1); -1 < t < 1, 1 < x < 4
- */
- static double fd_3half_b_data[22] = {
- 13.403206654624176674,
- 5.574508357051880924,
- 0.931228574387527769,
- 0.054638356514085862,
- -0.001477172902737439,
- -0.000029378553381869,
- 0.000018357033493246,
- -2.348059218454e-6,
- 8.3173787440e-8,
- 2.6826486956e-8,
- -6.011244398e-9,
- 4.94345981e-10,
- 3.9557340e-11,
- -1.7894930e-11,
- 2.348972e-12,
- -1.2823e-14,
- -5.4192e-14,
- 1.0527e-14,
- -6.39e-16,
- -1.47e-16,
- 4.5e-17,
- -5.e-18
- };
- static cheb_series fd_3half_b_cs = {
- fd_3half_b_data,
- 21,
- -1, 1,
- 12
- };
-
-
- /* Chebyshev fit for F_{3/2}(3(t+1) + 4); -1 < t < 1, 4 < x < 10
- */
- static double fd_3half_c_data[21] = {
- 101.03685253378877642,
- 43.62085156043435883,
- 6.62241373362387453,
- 0.25081415008708521,
- -0.00798124846271395,
- 0.00063462245101023,
- -0.00006392178890410,
- 6.04535131939e-6,
- -3.4007683037e-7,
- -4.072661545e-8,
- 1.931148453e-8,
- -4.46328355e-9,
- 7.9434717e-10,
- -1.1573569e-10,
- 1.304658e-11,
- -7.4114e-13,
- -1.4181e-13,
- 6.491e-14,
- -1.597e-14,
- 3.05e-15,
- -4.8e-16
- };
- static cheb_series fd_3half_c_cs = {
- fd_3half_c_data,
- 20,
- -1, 1,
- 12
- };
-
-
- /* Chebyshev fit for F_{3/2}(x) / x^(5/2)
- * 10 < x < 30
- * -1 < t < 1
- * t = 1/10 (x-10) - 1 = x/10 - 2
- */
- static double fd_3half_d_data[25] = {
- 0.6160645215171852381,
- -0.0071239478492671463,
- 0.0027906866139659846,
- -0.0009829521424317718,
- 0.0003260229808519545,
- -0.0001040160912910890,
- 0.0000322931223232439,
- -9.8243506588102e-6,
- 2.9420132351277e-6,
- -8.699154670418e-7,
- 2.545460071999e-7,
- -7.38305056331e-8,
- 2.12545670310e-8,
- -6.0796532462e-9,
- 1.7294556741e-9,
- -4.896540687e-10,
- 1.380786037e-10,
- -3.88057305e-11,
- 1.08753212e-11,
- -3.0407308e-12,
- 8.485626e-13,
- -2.364275e-13,
- 6.57636e-14,
- -1.81807e-14,
- 4.6884e-15
- };
- static cheb_series fd_3half_d_cs = {
- fd_3half_d_data,
- 24,
- -1, 1,
- 16
- };
-
-
- /* Goano's modification of the Levin-u implementation.
- * This is a simplification of the original WHIZ algorithm.
- * See [Fessler et al., ACM Toms 9, 346 (1983)].
- */
- static
- int
- fd_whiz(const double term, const int iterm,
- double * qnum, double * qden,
- double * result, double * s)
- {
- if(iterm == 0) *s = 0.0;
-
- *s += term;
-
- qden[iterm] = 1.0/(term*(iterm+1.0)*(iterm+1.0));
- qnum[iterm] = *s * qden[iterm];
-
- if(iterm > 0) {
- double factor = 1.0;
- double ratio = iterm/(iterm+1.0);
- int j;
- for(j=iterm-1; j>=0; j--) {
- double c = factor * (j+1.0) / (iterm+1.0);
- factor *= ratio;
- qden[j] = qden[j+1] - c * qden[j];
- qnum[j] = qnum[j+1] - c * qnum[j];
- }
- }
-
- *result = qnum[0] / qden[0];
- return GSL_SUCCESS;
- }
-
-
- /* Handle case of integer j <= -2.
- */
- static
- int
- fd_nint(const int j, const double x, gsl_sf_result * result)
- {
- /* const int nsize = 100 + 1; */
- enum {
- nsize = 100+1
- };
- double qcoeff[nsize];
-
- if(j >= -1) {
- result->val = 0.0;
- result->err = 0.0;
- GSL_ERROR ("error", GSL_ESANITY);
- }
- else if(j < -(nsize)) {
- result->val = 0.0;
- result->err = 0.0;
- GSL_ERROR ("error", GSL_EUNIMPL);
- }
- else {
- double a, p, f;
- int i, k;
- int n = -(j+1);
-
- qcoeff[1] = 1.0;
-
- for(k=2; k<=n; k++) {
- qcoeff[k] = -qcoeff[k-1];
- for(i=k-1; i>=2; i--) {
- qcoeff[i] = i*qcoeff[i] - (k-(i-1))*qcoeff[i-1];
- }
- }
-
- if(x >= 0.0) {
- a = exp(-x);
- f = qcoeff[1];
- for(i=2; i<=n; i++) {
- f = f*a + qcoeff[i];
- }
- }
- else {
- a = exp(x);
- f = qcoeff[n];
- for(i=n-1; i>=1; i--) {
- f = f*a + qcoeff[i];
- }
- }
-
- p = gsl_sf_pow_int(1.0+a, j);
- result->val = f*a*p;
- result->err = 3.0 * GSL_DBL_EPSILON * fabs(f*a*p);
- return GSL_SUCCESS;
- }
- }
-
-
- /* x < 0
- */
- static
- int
- fd_neg(const double j, const double x, gsl_sf_result * result)
- {
- enum {
- itmax = 100,
- qsize = 100+1
- };
- /* const int itmax = 100; */
- /* const int qsize = 100 + 1; */
- double qnum[qsize], qden[qsize];
-
- if(x < GSL_LOG_DBL_MIN) {
- result->val = 0.0;
- result->err = 0.0;
- return GSL_SUCCESS;
- }
- else if(x < -1.0 && x < -fabs(j+1.0)) {
- /* Simple series implementation. Avoid the
- * complexity and extra work of the series
- * acceleration method below.
- */
- double ex = exp(x);
- double term = ex;
- double sum = term;
- int n;
- for(n=2; n<100; n++) {
- double rat = (n-1.0)/n;
- double p = pow(rat, j+1.0);
- term *= -ex * p;
- sum += term;
- if(fabs(term/sum) < GSL_DBL_EPSILON) break;
- }
- result->val = sum;
- result->err = 2.0 * GSL_DBL_EPSILON * fabs(sum);
- return GSL_SUCCESS;
- }
- else {
- double s;
- double xn = x;
- double ex = -exp(x);
- double enx = -ex;
- double f = 0.0;
- double f_previous;
- int jterm;
- for(jterm=0; jterm<=itmax; jterm++) {
- double p = pow(jterm+1.0, j+1.0);
- double term = enx/p;
- f_previous = f;
- fd_whiz(term, jterm, qnum, qden, &f, &s);
- xn += x;
- if(fabs(f-f_previous) < fabs(f)*2.0*GSL_DBL_EPSILON || xn < GSL_LOG_DBL_MIN) break;
- enx *= ex;
- }
-
- result->val = f;
- result->err = fabs(f-f_previous);
- result->err += 2.0 * GSL_DBL_EPSILON * fabs(f);
-
- if(jterm == itmax)
- GSL_ERROR ("error", GSL_EMAXITER);
- else
- return GSL_SUCCESS;
- }
- }
-
-
- /* asymptotic expansion
- * j + 2.0 > 0.0
- */
- static
- int
- fd_asymp(const double j, const double x, gsl_sf_result * result)
- {
- const int j_integer = ( fabs(j - floor(j+0.5)) < 100.0*GSL_DBL_EPSILON );
- const int itmax = 200;
- gsl_sf_result lg;
- int stat_lg = gsl_sf_lngamma_e(j + 2.0, &lg);
- double seqn_val = 0.5;
- double seqn_err = 0.0;
- double xm2 = (1.0/x)/x;
- double xgam = 1.0;
- double add = GSL_DBL_MAX;
- double cos_term;
- double ln_x;
- double ex_term_1;
- double ex_term_2;
- gsl_sf_result fneg;
- gsl_sf_result ex_arg;
- gsl_sf_result ex;
- int stat_fneg;
- int stat_e;
- int n;
- for(n=1; n<=itmax; n++) {
- double add_previous = add;
- gsl_sf_result eta;
- gsl_sf_eta_int_e(2*n, &eta);
- xgam = xgam * xm2 * (j + 1.0 - (2*n-2)) * (j + 1.0 - (2*n-1));
- add = eta.val * xgam;
- if(!j_integer && fabs(add) > fabs(add_previous)) break;
- if(fabs(add/seqn_val) < GSL_DBL_EPSILON) break;
- seqn_val += add;
- seqn_err += 2.0 * GSL_DBL_EPSILON * fabs(add);
- }
- seqn_err += fabs(add);
-
- stat_fneg = fd_neg(j, -x, &fneg);
- ln_x = log(x);
- ex_term_1 = (j+1.0)*ln_x;
- ex_term_2 = lg.val;
- ex_arg.val = ex_term_1 - ex_term_2; /*(j+1.0)*ln_x - lg.val; */
- ex_arg.err = GSL_DBL_EPSILON*(fabs(ex_term_1) + fabs(ex_term_2)) + lg.err;
- stat_e = gsl_sf_exp_err_e(ex_arg.val, ex_arg.err, &ex);
- cos_term = cos(j*M_PI);
- result->val = cos_term * fneg.val + 2.0 * seqn_val * ex.val;
- result->err = fabs(2.0 * ex.err * seqn_val);
- result->err += fabs(2.0 * ex.val * seqn_err);
- result->err += fabs(cos_term) * fneg.err;
- result->err += 4.0 * GSL_DBL_EPSILON * fabs(result->val);
- return GSL_ERROR_SELECT_3(stat_e, stat_fneg, stat_lg);
- }
-
-
- /* Series evaluation for small x, generic j.
- * [Goano (8)]
- */
- #if 0
- static
- int
- fd_series(const double j, const double x, double * result)
- {
- const int nmax = 1000;
- int n;
- double sum = 0.0;
- double prev;
- double pow_factor = 1.0;
- double eta_factor;
- gsl_sf_eta_e(j + 1.0, &eta_factor);
- prev = pow_factor * eta_factor;
- sum += prev;
- for(n=1; n<nmax; n++) {
- double term;
- gsl_sf_eta_e(j+1.0-n, &eta_factor);
- pow_factor *= x/n;
- term = pow_factor * eta_factor;
- sum += term;
- if(fabs(term/sum) < GSL_DBL_EPSILON && fabs(prev/sum) < GSL_DBL_EPSILON) break;
- prev = term;
- }
-
- *result = sum;
- return GSL_SUCCESS;
- }
- #endif /* 0 */
-
-
- /* Series evaluation for small x > 0, integer j > 0; x < Pi.
- * [Goano (8)]
- */
- static
- int
- fd_series_int(const int j, const double x, gsl_sf_result * result)
- {
- int n;
- double sum = 0.0;
- double del;
- double pow_factor = 1.0;
- gsl_sf_result eta_factor;
- gsl_sf_eta_int_e(j + 1, &eta_factor);
- del = pow_factor * eta_factor.val;
- sum += del;
-
- /* Sum terms where the argument
- * of eta() is positive.
- */
- for(n=1; n<=j+2; n++) {
- gsl_sf_eta_int_e(j+1-n, &eta_factor);
- pow_factor *= x/n;
- del = pow_factor * eta_factor.val;
- sum += del;
- if(fabs(del/sum) < GSL_DBL_EPSILON) break;
- }
-
- /* Now sum the terms where eta() is negative.
- * The argument of eta() must be odd as well,
- * so it is convenient to transform the series
- * as follows:
- *
- * Sum[ eta(j+1-n) x^n / n!, {n,j+4,Infinity}]
- * = x^j / j! Sum[ eta(1-2m) x^(2m) j! / (2m+j)! , {m,2,Infinity}]
- *
- * We do not need to do this sum if j is large enough.
- */
- if(j < 32) {
- int m;
- gsl_sf_result jfact;
- double sum2;
- double pre2;
-
- gsl_sf_fact_e((unsigned int)j, &jfact);
- pre2 = gsl_sf_pow_int(x, j) / jfact.val;
-
- gsl_sf_eta_int_e(-3, &eta_factor);
- pow_factor = x*x*x*x / ((j+4)*(j+3)*(j+2)*(j+1));
- sum2 = eta_factor.val * pow_factor;
-
- for(m=3; m<24; m++) {
- gsl_sf_eta_int_e(1-2*m, &eta_factor);
- pow_factor *= x*x / ((j+2*m)*(j+2*m-1));
- sum2 += eta_factor.val * pow_factor;
- }
-
- sum += pre2 * sum2;
- }
-
- result->val = sum;
- result->err = 2.0 * GSL_DBL_EPSILON * fabs(sum);
-
- return GSL_SUCCESS;
- }
-
-
- /* series of hypergeometric functions for integer j > 0, x > 0
- * [Goano (7)]
- */
- static
- int
- fd_UMseries_int(const int j, const double x, gsl_sf_result * result)
- {
- const int nmax = 2000;
- double pre;
- double lnpre_val;
- double lnpre_err;
- double sum_even_val = 1.0;
- double sum_even_err = 0.0;
- double sum_odd_val = 0.0;
- double sum_odd_err = 0.0;
- int stat_sum;
- int stat_e;
- int stat_h = GSL_SUCCESS;
- int n;
-
- if(x < 500.0 && j < 80) {
- double p = gsl_sf_pow_int(x, j+1);
- gsl_sf_result g;
- gsl_sf_fact_e(j+1, &g); /* Gamma(j+2) */
- lnpre_val = 0.0;
- lnpre_err = 0.0;
- pre = p/g.val;
- }
- else {
- double lnx = log(x);
- gsl_sf_result lg;
- gsl_sf_lngamma_e(j + 2.0, &lg);
- lnpre_val = (j+1.0)*lnx - lg.val;
- lnpre_err = 2.0 * GSL_DBL_EPSILON * fabs((j+1.0)*lnx) + lg.err;
- pre = 1.0;
- }
-
- /* Add up the odd terms of the sum.
- */
- for(n=1; n<nmax; n+=2) {
- double del_val;
- double del_err;
- gsl_sf_result U;
- gsl_sf_result M;
- int stat_h_U = gsl_sf_hyperg_U_int_e(1, j+2, n*x, &U);
- int stat_h_F = gsl_sf_hyperg_1F1_int_e(1, j+2, -n*x, &M);
- stat_h = GSL_ERROR_SELECT_3(stat_h, stat_h_U, stat_h_F);
- del_val = ((j+1.0)*U.val - M.val);
- del_err = (fabs(j+1.0)*U.err + M.err);
- sum_odd_val += del_val;
- sum_odd_err += del_err;
- if(fabs(del_val/sum_odd_val) < GSL_DBL_EPSILON) break;
- }
-
- /* Add up the even terms of the sum.
- */
- for(n=2; n<nmax; n+=2) {
- double del_val;
- double del_err;
- gsl_sf_result U;
- gsl_sf_result M;
- int stat_h_U = gsl_sf_hyperg_U_int_e(1, j+2, n*x, &U);
- int stat_h_F = gsl_sf_hyperg_1F1_int_e(1, j+2, -n*x, &M);
- stat_h = GSL_ERROR_SELECT_3(stat_h, stat_h_U, stat_h_F);
- del_val = ((j+1.0)*U.val - M.val);
- del_err = (fabs(j+1.0)*U.err + M.err);
- sum_even_val -= del_val;
- sum_even_err += del_err;
- if(fabs(del_val/sum_even_val) < GSL_DBL_EPSILON) break;
- }
-
- stat_sum = ( n >= nmax ? GSL_EMAXITER : GSL_SUCCESS );
- stat_e = gsl_sf_exp_mult_err_e(lnpre_val, lnpre_err,
- pre*(sum_even_val + sum_odd_val),
- pre*(sum_even_err + sum_odd_err),
- result);
- result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
-
- return GSL_ERROR_SELECT_3(stat_e, stat_h, stat_sum);
- }
-
-
- /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/
-
- /* [Goano (4)] */
- int gsl_sf_fermi_dirac_m1_e(const double x, gsl_sf_result * result)
- {
- if(x < GSL_LOG_DBL_MIN) {
- UNDERFLOW_ERROR(result);
- }
- else if(x < 0.0) {
- const double ex = exp(x);
- result->val = ex/(1.0+ex);
- result->err = 2.0 * (fabs(x) + 1.0) * GSL_DBL_EPSILON * fabs(result->val);
- return GSL_SUCCESS;
- }
- else {
- double ex = exp(-x);
- result->val = 1.0/(1.0 + ex);
- result->err = 2.0 * GSL_DBL_EPSILON * (x + 1.0) * ex;
- return GSL_SUCCESS;
- }
- }
-
-
- /* [Goano (3)] */
- int gsl_sf_fermi_dirac_0_e(const double x, gsl_sf_result * result)
- {
- if(x < GSL_LOG_DBL_MIN) {
- UNDERFLOW_ERROR(result);
- }
- else if(x < -5.0) {
- double ex = exp(x);
- double ser = 1.0 - ex*(0.5 - ex*(1.0/3.0 - ex*(1.0/4.0 - ex*(1.0/5.0 - ex/6.0))));
- result->val = ex * ser;
- result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
- return GSL_SUCCESS;
- }
- else if(x < 10.0) {
- result->val = log(1.0 + exp(x));
- result->err = fabs(x * GSL_DBL_EPSILON);
- return GSL_SUCCESS;
- }
- else {
- double ex = exp(-x);
- result->val = x + ex * (1.0 - 0.5*ex + ex*ex/3.0 - ex*ex*ex/4.0);
- result->err = (x + ex) * GSL_DBL_EPSILON;
- return GSL_SUCCESS;
- }
- }
-
-
- int gsl_sf_fermi_dirac_1_e(const double x, gsl_sf_result * result)
- {
- if(x < GSL_LOG_DBL_MIN) {
- UNDERFLOW_ERROR(result);
- }
- else if(x < -1.0) {
- /* series [Goano (6)]
- */
- double ex = exp(x);
- double term = ex;
- double sum = term;
- int n;
- for(n=2; n<100 ; n++) {
- double rat = (n-1.0)/n;
- term *= -ex * rat * rat;
- sum += term;
- if(fabs(term/sum) < GSL_DBL_EPSILON) break;
- }
- result->val = sum;
- result->err = 2.0 * fabs(sum) * GSL_DBL_EPSILON;
- return GSL_SUCCESS;
- }
- else if(x < 1.0) {
- return cheb_eval_e(&fd_1_a_cs, x, result);
- }
- else if(x < 4.0) {
- double t = 2.0/3.0*(x-1.0) - 1.0;
- return cheb_eval_e(&fd_1_b_cs, t, result);
- }
- else if(x < 10.0) {
- double t = 1.0/3.0*(x-4.0) - 1.0;
- return cheb_eval_e(&fd_1_c_cs, t, result);
- }
- else if(x < 30.0) {
- double t = 0.1*x - 2.0;
- gsl_sf_result c;
- cheb_eval_e(&fd_1_d_cs, t, &c);
- result->val = c.val * x*x;
- result->err = c.err * x*x + GSL_DBL_EPSILON * fabs(result->val);
- return GSL_SUCCESS;
- }
- else if(x < 1.0/GSL_SQRT_DBL_EPSILON) {
- double t = 60.0/x - 1.0;
- gsl_sf_result c;
- cheb_eval_e(&fd_1_e_cs, t, &c);
- result->val = c.val * x*x;
- result->err = c.err * x*x + GSL_DBL_EPSILON * fabs(result->val);
- return GSL_SUCCESS;
- }
- else if(x < GSL_SQRT_DBL_MAX) {
- result->val = 0.5 * x*x;
- result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
- return GSL_SUCCESS;
- }
- else {
- OVERFLOW_ERROR(result);
- }
- }
-
-
- int gsl_sf_fermi_dirac_2_e(const double x, gsl_sf_result * result)
- {
- if(x < GSL_LOG_DBL_MIN) {
- UNDERFLOW_ERROR(result);
- }
- else if(x < -1.0) {
- /* series [Goano (6)]
- */
- double ex = exp(x);
- double term = ex;
- double sum = term;
- int n;
- for(n=2; n<100 ; n++) {
- double rat = (n-1.0)/n;
- term *= -ex * rat * rat * rat;
- sum += term;
- if(fabs(term/sum) < GSL_DBL_EPSILON) break;
- }
- result->val = sum;
- result->err = 2.0 * GSL_DBL_EPSILON * fabs(sum);
- return GSL_SUCCESS;
- }
- else if(x < 1.0) {
- return cheb_eval_e(&fd_2_a_cs, x, result);
- }
- else if(x < 4.0) {
- double t = 2.0/3.0*(x-1.0) - 1.0;
- return cheb_eval_e(&fd_2_b_cs, t, result);
- }
- else if(x < 10.0) {
- double t = 1.0/3.0*(x-4.0) - 1.0;
- return cheb_eval_e(&fd_2_c_cs, t, result);
- }
- else if(x < 30.0) {
- double t = 0.1*x - 2.0;
- gsl_sf_result c;
- cheb_eval_e(&fd_2_d_cs, t, &c);
- result->val = c.val * x*x*x;
- result->err = c.err * x*x*x + 3.0 * GSL_DBL_EPSILON * fabs(result->val);
- return GSL_SUCCESS;
- }
- else if(x < 1.0/GSL_ROOT3_DBL_EPSILON) {
- double t = 60.0/x - 1.0;
- gsl_sf_result c;
- cheb_eval_e(&fd_2_e_cs, t, &c);
- result->val = c.val * x*x*x;
- result->err = c.err * x*x*x + 3.0 * GSL_DBL_EPSILON * fabs(result->val);
- return GSL_SUCCESS;
- }
- else if(x < GSL_ROOT3_DBL_MAX) {
- result->val = 1.0/6.0 * x*x*x;
- result->err = 3.0 * GSL_DBL_EPSILON * fabs(result->val);
- return GSL_SUCCESS;
- }
- else {
- OVERFLOW_ERROR(result);
- }
- }
-
-
- int gsl_sf_fermi_dirac_int_e(const int j, const double x, gsl_sf_result * result)
- {
- if(j < -1) {
- return fd_nint(j, x, result);
- }
- else if (j == -1) {
- return gsl_sf_fermi_dirac_m1_e(x, result);
- }
- else if(j == 0) {
- return gsl_sf_fermi_dirac_0_e(x, result);
- }
- else if(j == 1) {
- return gsl_sf_fermi_dirac_1_e(x, result);
- }
- else if(j == 2) {
- return gsl_sf_fermi_dirac_2_e(x, result);
- }
- else if(x < 0.0) {
- return fd_neg(j, x, result);
- }
- else if(x == 0.0) {
- return gsl_sf_eta_int_e(j+1, result);
- }
- else if(x < 1.5) {
- return fd_series_int(j, x, result);
- }
- else {
- gsl_sf_result fasymp;
- int stat_asymp = fd_asymp(j, x, &fasymp);
-
- if(stat_asymp == GSL_SUCCESS) {
- result->val = fasymp.val;
- result->err = fasymp.err;
- result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
- return stat_asymp;
- }
- else {
- return fd_UMseries_int(j, x, result);
- }
- }
- }
-
-
- int gsl_sf_fermi_dirac_mhalf_e(const double x, gsl_sf_result * result)
- {
- if(x < GSL_LOG_DBL_MIN) {
- UNDERFLOW_ERROR(result);
- }
- else if(x < -1.0) {
- /* series [Goano (6)]
- */
- double ex = exp(x);
- double term = ex;
- double sum = term;
- int n;
- for(n=2; n<200 ; n++) {
- double rat = (n-1.0)/n;
- term *= -ex * sqrt(rat);
- sum += term;
- if(fabs(term/sum) < GSL_DBL_EPSILON) break;
- }
- result->val = sum;
- result->err = 2.0 * fabs(sum) * GSL_DBL_EPSILON;
- return GSL_SUCCESS;
- }
- else if(x < 1.0) {
- return cheb_eval_e(&fd_mhalf_a_cs, x, result);
- }
- else if(x < 4.0) {
- double t = 2.0/3.0*(x-1.0) - 1.0;
- return cheb_eval_e(&fd_mhalf_b_cs, t, result);
- }
- else if(x < 10.0) {
- double t = 1.0/3.0*(x-4.0) - 1.0;
- return cheb_eval_e(&fd_mhalf_c_cs, t, result);
- }
- else if(x < 30.0) {
- double rtx = sqrt(x);
- double t = 0.1*x - 2.0;
- gsl_sf_result c;
- cheb_eval_e(&fd_mhalf_d_cs, t, &c);
- result->val = c.val * rtx;
- result->err = c.err * rtx + 0.5 * GSL_DBL_EPSILON * fabs(result->val);
- return GSL_SUCCESS;
- }
- else {
- return fd_asymp(-0.5, x, result);
- }
- }
-
-
- int gsl_sf_fermi_dirac_half_e(const double x, gsl_sf_result * result)
- {
- if(x < GSL_LOG_DBL_MIN) {
- UNDERFLOW_ERROR(result);
- }
- else if(x < -1.0) {
- /* series [Goano (6)]
- */
- double ex = exp(x);
- double term = ex;
- double sum = term;
- int n;
- for(n=2; n<100 ; n++) {
- double rat = (n-1.0)/n;
- term *= -ex * rat * sqrt(rat);
- sum += term;
- if(fabs(term/sum) < GSL_DBL_EPSILON) break;
- }
- result->val = sum;
- result->err = 2.0 * fabs(sum) * GSL_DBL_EPSILON;
- return GSL_SUCCESS;
- }
- else if(x < 1.0) {
- return cheb_eval_e(&fd_half_a_cs, x, result);
- }
- else if(x < 4.0) {
- double t = 2.0/3.0*(x-1.0) - 1.0;
- return cheb_eval_e(&fd_half_b_cs, t, result);
- }
- else if(x < 10.0) {
- double t = 1.0/3.0*(x-4.0) - 1.0;
- return cheb_eval_e(&fd_half_c_cs, t, result);
- }
- else if(x < 30.0) {
- double x32 = x*sqrt(x);
- double t = 0.1*x - 2.0;
- gsl_sf_result c;
- cheb_eval_e(&fd_half_d_cs, t, &c);
- result->val = c.val * x32;
- result->err = c.err * x32 + 1.5 * GSL_DBL_EPSILON * fabs(result->val);
- return GSL_SUCCESS;
- }
- else {
- return fd_asymp(0.5, x, result);
- }
- }
-
-
- int gsl_sf_fermi_dirac_3half_e(const double x, gsl_sf_result * result)
- {
- if(x < GSL_LOG_DBL_MIN) {
- UNDERFLOW_ERROR(result);
- }
- else if(x < -1.0) {
- /* series [Goano (6)]
- */
- double ex = exp(x);
- double term = ex;
- double sum = term;
- int n;
- for(n=2; n<100 ; n++) {
- double rat = (n-1.0)/n;
- term *= -ex * rat * rat * sqrt(rat);
- sum += term;
- if(fabs(term/sum) < GSL_DBL_EPSILON) break;
- }
- result->val = sum;
- result->err = 2.0 * fabs(sum) * GSL_DBL_EPSILON;
- return GSL_SUCCESS;
- }
- else if(x < 1.0) {
- return cheb_eval_e(&fd_3half_a_cs, x, result);
- }
- else if(x < 4.0) {
- double t = 2.0/3.0*(x-1.0) - 1.0;
- return cheb_eval_e(&fd_3half_b_cs, t, result);
- }
- else if(x < 10.0) {
- double t = 1.0/3.0*(x-4.0) - 1.0;
- return cheb_eval_e(&fd_3half_c_cs, t, result);
- }
- else if(x < 30.0) {
- double x52 = x*x*sqrt(x);
- double t = 0.1*x - 2.0;
- gsl_sf_result c;
- cheb_eval_e(&fd_3half_d_cs, t, &c);
- result->val = c.val * x52;
- result->err = c.err * x52 + 2.5 * GSL_DBL_EPSILON * fabs(result->val);
- return GSL_SUCCESS;
- }
- else {
- return fd_asymp(1.5, x, result);
- }
- }
-
- /* [Goano p. 222] */
- int gsl_sf_fermi_dirac_inc_0_e(const double x, const double b, gsl_sf_result * result)
- {
- if(b < 0.0) {
- DOMAIN_ERROR(result);
- }
- else {
- double arg = b - x;
- gsl_sf_result f0;
- int status = gsl_sf_fermi_dirac_0_e(arg, &f0);
- result->val = f0.val - arg;
- result->err = f0.err + GSL_DBL_EPSILON * (fabs(x) + fabs(b));
- return status;
- }
- }
-
-
-
- /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/
-
- #include "eval.h"
-
- double gsl_sf_fermi_dirac_m1(const double x)
- {
- EVAL_RESULT(gsl_sf_fermi_dirac_m1_e(x, &result));
- }
-
- double gsl_sf_fermi_dirac_0(const double x)
- {
- EVAL_RESULT(gsl_sf_fermi_dirac_0_e(x, &result));
- }
-
- double gsl_sf_fermi_dirac_1(const double x)
- {
- EVAL_RESULT(gsl_sf_fermi_dirac_1_e(x, &result));
- }
-
- double gsl_sf_fermi_dirac_2(const double x)
- {
- EVAL_RESULT(gsl_sf_fermi_dirac_2_e(x, &result));
- }
-
- double gsl_sf_fermi_dirac_int(const int j, const double x)
- {
- EVAL_RESULT(gsl_sf_fermi_dirac_int_e(j, x, &result));
- }
-
- double gsl_sf_fermi_dirac_mhalf(const double x)
- {
- EVAL_RESULT(gsl_sf_fermi_dirac_mhalf_e(x, &result));
- }
-
- double gsl_sf_fermi_dirac_half(const double x)
- {
- EVAL_RESULT(gsl_sf_fermi_dirac_half_e(x, &result));
- }
-
- double gsl_sf_fermi_dirac_3half(const double x)
- {
- EVAL_RESULT(gsl_sf_fermi_dirac_3half_e(x, &result));
- }
-
- double gsl_sf_fermi_dirac_inc_0(const double x, const double b)
- {
- EVAL_RESULT(gsl_sf_fermi_dirac_inc_0_e(x, b, &result));
- }
-